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devices. This corresponds to a minimum noise figure of 0.34 dB,

The minimum noise figure at 18 GHz for a 0.1 pm device,
projected in an identical manner, is 1.2 dB.

VI. CONCLUSIONS

Reported device performance from the technical literature
published from 1966 to 1988 was analyzed to predict ultimate
frequency limits of GaAs MESFET’S. The data indicate that

gain–bandwidth products in the range of 200 GHz and maxi-
mum frequencies of oscillation of the order of 700 GHz may be
achievable with GaAs MESFET structures. Previous work [2]
indicates that if progress continues at the present rate, such
performance will be achieved by the year 1997, Achieving the

projected performance will almost certainly require advances in
current process technology. Although 0.1 ~m devices have al-

ready been fabricated, optimally scaled devices with superior

material quality and an absence of surface and channel–inter-
face states have not been achieved. Further advances in fre-

quency performance will be possible with other solid-state
transistors such as InP FET’s or HEMT’s, which were not
considered to form the data base for this study.

The data presented can also be used as a standard upon
which to judge device scaling efforts. If appropriate device

scaling has been achieved, GaAs FET figures of merit should
fall on or above the curves presented here.
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A Method of Tolerance Enhancement for Filters
and Amplifier Matching Networks

A, N, Riddle and R. J. Trew

Abstract —A new filter prototype for increasing the tolerance of pas-
sive networks to load variations is presented. A method based on the way
in which a network>s reflection coetTicient changes in response to compo-

nent and load reactance variations is used to develop the filter polyno-
mial. This new flter polynomial has greater tolerance to load reactance
variations, component variations, and finite element Q than Butter-
worth, Chebyshev, or elliptic strictures. Examples using this new filter
for tolerauce enhancement of filters and matching structures are pre-

sented.
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I
Fig. 1. A Smith chart containing the maximum tolerable reflection,
r m.1,~ and the input reflection coefficient at ~(), S1 ,(~t)). The dashed
radial line represents the direction of minimum absolute variation in

S, ,(~()). The alternating line perpendicular to the S, ,(~,,) vector repre-
sents the direction of maximum absolute tolerance since the distance

between S1,(~()) and the S1, ~,,X circle is maximized.

I. INTRODUCTION

To date little work has been reported on appropriate design

procedures for high-tolerance matching networks. A new method
for designing suitable matching networks is presented in this

paper. In particular, a solution to the approximation problem
for deriving filters with greater tolerances to load parasitic,

loss, and element tolerances is presented. The filter polynomial
represented in this paper is intended to be used with synthesis

procedures discussed elsewhere [1], [2]. Only lumped element
prototypes are considered so that the effects of the filtering
function, rather than a particular realization method, may be
studied.

The first detailed consideration of ideal responses for match-
ing filters was presented by Fano [3]. Although Fano demon-
strated that a low-ripple Chebyshev response approximating a

constant mismatch was superior to a large-ripple Chebyshev

response with the same peak mismatch, he did not explore filter
responses other than Butterworth, Chebyshev, and elliptic types.

The filter polynomial developed in this paper was designed to

maximize the filter’s tolerance to load reactance variations.
Load rcactancc variations typically would be changes in FET
input capacity or bond wire inductance, Since the sensitivity to
reactance variations is reduced, both Icad inductance and device
capacitance variations have lCSSeffect on the amplifier response
when this filter prototype is used to design the matching net-
work.

This ncw filter response was derived from geometrical consid-
erations in the reflection coefficient plane (Fig. 1). Amplifiers
and filters arc spccificd not to cxcccd a certain rcflcctiorr
coefficient. Let this specification bc the r~,,,x circle shown in Fig.
1. Tolerant networks allow greater variations in circuit compo-

nents before the response cxcccds this r,,,<,X circle. The S,,( f(, )
vector shown in Fig. 1 rcprcscnts a circuit’s response at onc
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frequency. When component variations force this vector radially
outward, we find the minimum tolerance to component varia-
tions. Since real components vary about a mean value we should

consider the minimum positive or negative change in a compo-
nent that violates the specification. The geometry of Fig. 1

shows that the maximum tolerance occurs when component
changes cause changes in S, ,(~(}) perpendicular to the radius

(i.e., circumferentially). This paper focuses on a heuristically
derived filter polynomial which translates reactive changes in

the filter’s load to approximately circumferential changes in S,,.

II. THEORY

By analyzing how various filtering functions fall out of specifi-

cation as the filter load is changed, several conclusions may be
reached. Load reactance variations tend to change the center
frequency of the Butterworth filter but not the magnitude of the
reflection. This would create an ideal tolerance characteristic if

it were not for the band edge variations. A Chebyshev filter has

the peaks of its ripple affected by load reactance variations, but
has more margin for error at the band edges. The new filter

polynomial presented here was derived to have the midband
tolerance characteristics of a Butterworth filter and the band

edge characteristic of a Chebyshev filter.

The filtering polynomial presented in, this paper (the F char-
acteristic) has a response similar to a second-order Chebyshev
filter. However, the F filter has this single ripple characteristic
for all orders (Fig. 3), and so is not a Chebyshev filter. The
broad midband response dip has a high tolerance to load reac-
tance variations (as does the Butterworth filter), and the re-

sponse peaks at the band edges help sharpen the skirts of the
filter. The multirippled characteristic of the Chebyshev filter is

avoided since as more ripples are added the response becomes

more sensitive to load reactance variations. This new character-

istic exists only for second- and higher order filters. At the

second order it degenerates to a Chebyshev characteristic. The

F filter has its highest tolerance when designed to have a flat
mismatch and a ;mall amount of ripple. ‘Guidelines
mismatch and the amount of ripple will be given later.

For a third-order response the F filter polynomial is

F:}c(p) =~p3++P2+/3P+l
a a!

for the

(1)

where a is the distance to the S,,(~) zeros (matched case) in the

normalized filter,

TABLE I

fll ,x FI[,T~R VALUES W)R ~m,,x = 0.23 ANU ~m,n = 0.115

Order R, L, c, L. Cd R,

2 1.0 1.23968 0.52601 1.5974
3 1.0 1.43152 0.83208 0.85453 1.5974
4 1.0 1.474 0.92859 1.6119 0.24289 1.5974

L2 C2 -Lf -Cf

o II

o
Lt Cl L3 C3 I !

I
zL(f)

Fig. 2. The third-order lumped filter network used in examining the

tolerances of filter responses. Inductors and capacitors 1 through 3
represent Ioss[ess filter elements. R, Cf, and L, represent a narrow-band

model of an FET input impedance. The ideal transformer ‘and negative

elements are used to equalize the filter for the complex FET impedance

without disturbing the filter components.

Higher orders may be obtained using the following recursion
formula:

,.+,).= (P2+l)F,.-,,. +PF..F (4)

where n is the order of the filter. The recursion formula is

derived by requiring that the above properties be met. The

parameter a is chosen to maximize the filter tolerance, which

could be done through least mean square optimization tech-

niques. A value of 0.78 serves as a good starting point for the

optimization, Normalized filter element values are given in
Table I for n = 2, 3, and 4 with a = 0.78.

111, RESULTS

The network of Fig. 2 is used to examine the tolerances of the
Butterworth, the Chebyshev, and the F filter to variations in a

series load capacitance. In order to give a fair comparison

between the Chebyshev and F filter types, each filter is de-
signed to have a bandwidth such that

~=d2a’-l

l–a’
(2)

p = m + jw, and 2- 1/2 < a <1. The following properties charac-

terize this filter polynomial:

FnU(0) = 1.0

Fma(jcr) = 0.0

FnU(j)=l.O for the matched case.

The polynomial in (1) is derived by multiplying out

()-$(P’+a’)p+;
and requiring that the above conditions be satisfied. The above

polynomial should bc used as the characteristic function of a

filter, just as a Chebyshev polynomial would be used. The
fourth-order equation is derived similarly to the third-order
polynomial. These ideas lead to the following fourth-order filter
polynomial:

~4,[(P) = $P4 + —,!a2P3+9P’+&TP+l. (3)

J
1

WIn — d(o=K
() s,,(a))

(5)

where K is the same for all filters. Both filters, therefore, have

the same ability to absorb complex load reactance. Since
Buttcrworth filters are known to be suboptimal [3], no attempt is
made to compare the Butterworth filters on the basis of match-

ing ability.
In the network shown in Fig. 2 the load is a narrow-band

model of the input impedance of a 0.7X 250 pm FET. The

model is intended for the 3.7 to 4.2 GHz range. Lf, Cl, and R

are 1.4 nH, 0.3 PF, and 8 0, respectively. Note that ideal

responses were obtained by neutralizing the load reactance
with negative components and using an ideal transformer. This
is so that component tolermces could be established without

working through the details of a specific realization, In practice,
Youla’s broad-band equalization theory [7] would be used to
neutralize the load reactance, and the ideal transformer could
be absorbed into the filter by Norton’s trwtsforrnation and the
use of immittance invcrtcrs.

In order to test the concepts and formulas dcvclopcd in the
theory section, various filters will bc exdmincd. These band-pass
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TABLE II

F]LT~R ELEMENT VALUES (~(, = 3.942 GHz)

Type (::2) n (:+) (:A) (% (:;) (:;) (%) (:;) (:;) (::)

Chebyshev 0.5 2.5 8.729 0.1867 8.648 18,11 0.09 17.94 8.729 0.1867 8.64

Chebyshev
(mismatched)- 0.562 z.~z 8.585 0.1899 8.51 13.99 0.1165 13.86 7.005 0.2327 6.94

New Filter

(F3 ~~ mismatched) 0.53 1.98 8.594 0.1897 8.52 12.49 0.131 12.37 5.138 0.3173 5.09

1-
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Fig. 3. S1~ versus frequency for the three filters described in Table II.

The solid line is the Chebyshev. The dashed line is the mismatched

Chebyshev. The alternating line is the Fq,8 filter. All of the filters have
the same return loss–bandwidth product.

filters are shown in Fig. 3. These networks are analyzed over the

3.7 to 4.2 GHz range for tolerances to load variations, element
variations, and loss. Table II gives the element values for a

Chebyshev filter of 0.5 GHz bandwidth and p~~, = 0.26, a

mismatched Chebyshev filter of 0.5617 GHz bandwidth with

pm~x = 0.23 and pmin = 0.115, and a mismatched F filter with

0.53 GHz bandwidth, a = 0.78, pm,, = 0.23, and pm,n = 0.115,

This a value is optimized for highest tolerance. All of the filters

have a center frequency of 3.942 GHz. All of the above filters

(except the Butterworth) also have a K of approximately 7,4x
109. For lossy filters the conductance and resistances of Table
II appear in parallel or in series with their respective resonant

circuits shown in Fig. 2.
A tolerance analysis of these filters showed that the mis-

matched Chebyshev filter and the F filter have up to 15 and
505%0 increases in load tolerance over the Chebyshev filter,
respectively. The mismatched Chebyshev filter and the F filter

exhibit increases in the element tolerances up to 3 and 4.5 times

greater than that of a Chebyshev filter. This shows the F filter
has a significant increase in element and device tolerances with
respect to commonly used filter prototypes. The tolerance infor-

mation is given for a maximum .S1,(~) = 0.333= r~~X with only
one component being varied. The improvement of the mis-

matched Chebyshev response over the normal Chebyshev re-

sponse may be attributed to the reduction of its maximum

reflection coefficient. The improvement of the F filter over the

mismatched Chebyshev is because the F filter has fewer ripples.
The increases in tolerance to parameter variations should result
in circuits which arc easier to tune.

It is important for noise figure and circuit performance that

the filters be affected as Iittlc as possible by loss. Fig.4 dcmnn-
strates the effects of uniform element Q’s of 25 on the three

filter types discussed. In both reflection and transmission re-
sponses, the F filter is Icast affected by loss. The F filter gives
0.4 and 1.3 dB less loss at the band ccntcr than the mismatched
and normal Chcbyshcv filters, rcspcctivcly. Note that prcdistor-
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Fig. 4. Gain versus frequency plot for the fi]ters described in Table II

having Iossy elements with Q’s of 25. The Cbebyshev response has a

solld line, the mismatched Chebyshev has a dashed line, and the F37i
response has an alternating hne.

tion would help the band edge response but hurt the band
center response. The end result is that the F filter is less
sensitive to element Q than either of the Chebyshev filters.

IV. CONCLUSIONS

Anew filter prototyp~ the F’filter, has been developed. This
filter has greater tolerance to load reactance and component

variations than Chebyshev filters. This new filter prototype was

based on geometric considerations in the reflection coefficient
plane. While the Ffilter prototype wasdesigned specifically for
a greater tolerance to load reactance variations, the F filter also
showed greater tolerance to the effects of loss. This makes this

new filter prototype useful for several reasons. Since insensitiv-
ity to loss and the greatest possible tolerances are essential to
designing lower cost and easily tuned microwave circuits, the

design techniques described above should aid the production of
microwave circuits.
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